[English]

Noncommutative localization in algebra and topology, by Andrew Ranicki
Noncommutative localization is a powerful algebraic technique for constructing new rings by inverting elements, matrices and more generally morphisms of modules. Originally conceived by algebraists (notably P.M. Cohn) it is now an important tool not only in pure algebra but also in the topology of non-simply-connected spaces, algebraic geometry and noncommutative geometry. This volume consists of 9 articles on noncommutative localization in algebra and topology. The aricles include basic definitions, surveys, historical background and applications, as well as presenting new results. The book is an introduction to the subject, an account of the state of the art, and also provides many references for further material.

Fundamental algorithms for permutation groups, by Gregory Butler
This is the first-ever book on computational group theory. It provides extensive and up-to-date coverage of the fundamental algorithms for permutation groups with reference to aspects of combinatorial group theory, soluble groups, and p-groups where appropriate. The book begins with a constructive introduction to group theory and algorithms for computing with small groups, followed by a gradual discussion of the basic ideas of Sims for computing with very large permutation groups, and concludes with algorithms that use group homomorphisms, as in the computation of Sylow subgroups. No background in group theory is assumed. The emphasis is on the details of the data structures and implementation which makes the algorithms effective when applied to realistic problems. The algorithms are developed hand-in-hand with the theoretical and practical justification.All algorithms are clearly described, examples are given, exercises reinforce understanding, and detailed bibliographical remarks explain the history and context of the work. Much of the later material on homomorphisms, Sylow subgroups, and soluble permutation groups is new.

Christian Huygens and the development of science in the seventeenth century, by Arthur Bell

Handbook of boolean algebras (volume 1), by J. Donald Monk and Robert Bonnet
Handbook of boolean algebras (volume 2), by J. Donald Monk and Robert Bonnet
Handbook of boolean algebras (volume 3), by J. Donald Monk and Robert Bonnet
This Handbook treats those parts of the theory of Boolean algebras of most interest to pure mathematicians: the set-theoretical abstract theory and applications and relationships to measure theory, topology, and logic. It is divided into two parts (published in three volumes). Part I (volume 1) is a comprehensive, self-contained introduction to the set-theoretical aspects of the theory of Boolean Algebras. It includes, in addition to a systematic introduction of basic algebra and topological ideas, recent developments such as the Balcar-Franek and Shelah-Shapirovskii results on free subalgebras. Part II (volumes 2 and 3) contains articles on special topics describing – mostly with full proofs – the most recent results in special areas such as automorphism groups, Ketonen’s theorem, recursive Boolean algebras, and measure algebras.

And in Physics:

From c-numbers to q-numbers, the classical analogy in the history of quantum theory, by Olivier Darrigol
The history of quantum theory is a maze of conceptual problems, through which Olivier Darrigol provides a lucid and learned guide, tracking the role of formal analogies between classical and quantum theory. From Planck’s first introduction of the quantum of action to Dirac’s formulation of quantum mechanics, Darrigol illuminates not only the history of quantum theory but also the role of analogies in scientific thinking and theory change. Unlike previous works, which have tended to focus on qualitative, global arguments, Darrigol’s study follows the lines of mathematical reasoning and symbolizing and so is able to show the motivations of early quantum theorists more preciselyand provocativelythan ever before. Erudite and original, From c- Numbers to q-Numbers sets a new standard as a philosophically perceptive and mathematically precise history of quantum mechanics.

Selected papers of M. Ohya, by N. Watanabe
This volume is a collection of articles written by Professor M Ohya over the past three decades in the areas of quantum teleportation, quantum information theory and quantum computers.

—————————————————————————————————–

[Español]

Noncommutative localization in algebra and topology, de Andrew Ranicki
La localización no conmutativa es una técnica algebraica poderosa para construir nuevos anillos mediante matrices, y más generalmente, mediante morfismos de módulos. Concebida originalmente por algebristas (en particular por P.M. Cohn), ahora es una herramienta importante también en la topología de espacios no simplemente conexos, en geometría algebraica y en geometría no conmutativa.

Fundamental algorithms for permutation groups, de Gregory Butler
El primer libro escrito sobre teoría de grupos computacional. Cubre de forma extensa y actualizada los algoritmos fundamentales de los grupos de permutación con respecto a la teoría combinatoria de grupos, grupos solubles, y p-grupos.

Christian Huygens and the development of science in the seventeenth century, de Arthur Bell

Handbook of boolean algebras (volumen 1), de J. Donald Monk y Robert Bonnet
Handbook of boolean algebras (volumen 2), de J. Donald Monk y Robert Bonnet
Handbook of boolean algebras (volumen 3), de J. Donald Monk y Robert Bonnet
Este Handbook comprende aquellas partes de la teoría de álgebras Booleanas de mayor interés para los matemáticos: teoría de conjuntos abstracta y sus aplicaciones a y relaciones con la teoría de la medida, topología y lógica. Se divide en tres partes, publicadas en tres volúmenes: La primera parte (volumen 1) es una introducción exhaustiva y autocontenida a los aspectos conjuntistas de la teoría de álgebras de Boole. Incluye, además de una introducción sistemática de las ideas algebraicas y topológicas básicas, desarrollos recientes como los resultados de Balcar-Franek y Shelah-Shapirovskii en subálgebras libres. La segunda parte (volúmenes 2 y 3) contienen artículos sobre temas especializados y describen (en su mayor parte con demostraciones completas) los resultados más recientes en áreas especializadas como los grupos de automorfismos, el teorema de Ketonen, álgebras de Boole recursivas y and álgebras de medida.

Y en Física:

From c-numbers to q-numbers, the classical analogy in the history of quantum theory, de Olivier Darrigol
La historia de la teoría cuántica es un laberinto de problemas conceptuales, a través de los cuales Olivier Darrigol proporciona una guía lúcida. Desde la introducción inicial del cuanto de acción de Planck hastea la formulación de la mecánica cuántica de Dirac, Darrigol no sólo ilumina la historia de la teoría cuántica, también lo consigue con el papel de las analogías en el pensamiento científico y el cambio de teorías.

Selected papers of M. Ohya, de N. Watanabe
Este volumen es una colección de artículos escritos por el profesor en las últimas tres décadas en teletransporte cuántico, teoría cuántica de la información y computadores cuánticos.